5,765 research outputs found

    Probing the twist-3 multi-gluon correlation functions by pp \to DX

    Full text link
    We study the single spin asymmetry (SSA) for the D-meson production ANDA_N^D in the pppp collision, p↑p→DXp^\uparrow p\to DX, in the framework of the collinear factorization. Since the charm quark is mainly produced through the ccˉc\bar{c}-pair creation from the gluon-fusion process, this is an ideal process to probe the twist-3 triple-gluon correlation functions in the polarized nucleon. We derive the corresponding cross section formula for the contribution of the triple-gluon correlation function to ANDA_N^D in p↑p→DXp^\uparrow p\to DX, applying the method developed for ep↑→eDXep^\uparrow\to eDX in our previous study. As in the case of ep↑→eDXep^\uparrow\to eDX, our result differs from a previous study in the literature. We will also present a simple estimate of the triple-gluon correlation functions based on the preliminary data on ANDA_N^D by RHIC.Comment: to appear in the proceedings of the 19th International Spin Physics Symposium (Spin2010), Sept.27 - Oct.2, 2010, Juelich, Germany, 5 pages, 2 figure

    A new screening function for Coulomb renormalization

    Get PDF
    We introduce a new screening function which is useful for the few-body Coulomb scattering problem in ``screening and renormalization'' scheme. The new renormalization phase factor of the screening function is analytically shown. The Yukawa type of the screening potential has been used in several decades, we modify it to make more useful. As a concrete example, we compare the proton-proton scattering phase shifts calculated from these potentials. The numerical results document that high precision calculations of the renormalization are performed by the new screening function.Comment: 4 pages, 8 figure

    On the contribution of twist-3 multi-gluon correlation functions to single transverse-spin asymmetry in SIDIS

    Full text link
    We study the single spin asymmetry (SSA) induced by purely gluonic correlation inside a nucleon, in particular, by the three-gluon correlation functions in the transversely polarized nucleon, p↑p^\uparrow. This contribution is embodied as a twist-3 mechanism in the collinear factorization framework and controls the SSA to be observed in the DD-meson production with large transverse-momentum in semi-inclusive DIS (SIDIS), ep↑→eDXep^\uparrow \rightarrow eDX. We define the relevant three-gluon correlation functions in the nucleon, and determine their complete set at the twsit-3 level taking into account symmetry constraints in QCD. We derive the single-spin-dependent cross section for the DD-meson production in SIDIS, taking into account all the relevant contributions at the twist-3 level. The result is obtained in a manifestly gauge-invariant form as the factorization formula in terms of the three-gluon correlation functions and reveals the five independent structures with respect to the dependence on the azimuthal angle for the produced DD meson. We also demonstrate the remarkable relation between the twist-3 single-spin-dependent cross section and twist-2 cross sections for the DD-meson production, as a manifestation of universal structure behind the SSA in a variety of hard processes.Comment: 8 pages, 2 figures. To appear in the proceedings of the 19th International Spin Physics Symposium (SPIN2010), Juelich, Germany, Sept.27 - Oct.2, 201

    N=2 Supermultiplet of Currents and Anomalous Transformations in Supersymmetric Gauge Theory

    Get PDF
    We examine some properties of supermultiplet consisting of the U(1)_{J} current, extended supercurrents, energy-momentum tensor and the central charge in N=2 supersymmetric Yang-Mills theory. The superconformal improvement requires adding another supermultiplet beginning with the U(1)_{R} current. We determine the anomalous (quantum mechanical) supersymmetry transformation associated with the central charge and the energy-momentum tensor to one-loop order.Comment: 8 pages, LaTe

    Complex Energy Method for Scattering Processes

    Get PDF
    A method for solving few-body scattering equations is proposed and examined. The solution of the scattering equations at complex energies is analytically continued to get scattering T-matrix with real positive energy. Numerical examples document that the method works well for two-nucleon scattering and three-nucleon scattering, if the set of complex energies is properly chosen.Comment: 6 pages, no figures, resubmitted to Prog. Theor. Phy

    Dynamics of compact homogeneous universes

    Get PDF
    A complete description of dynamics of compact locally homogeneous universes is given, which, in particular, includes explicit calculations of Teichm\"uller deformations and careful counting of dynamical degrees of freedom. We regard each of the universes as a simply connected four dimensional spacetime with identifications by the action of a discrete subgroup of the isometry group. We then reduce the identifications defined by the spacetime isometries to ones in a homogeneous section, and find a condition that such spatial identifications must satisfy. This is essential for explicit construction of compact homogenoeus universes. Some examples are demonstrated for Bianchi II, VI0{}_0, VII0{}_0, and I universal covers.Comment: 32 pages with 2 figures (LaTeX with epsf macro package

    Weak coupling d-wave BCS superconductivity and unpaired electrons in overdoped La_{2-x}Sr_{x}CuO_{4} single crystals

    Get PDF
    The low-temperature specific heat (SH) of overdoped La_{2-x}Sr_{x}CuO_{4} single crystals (0.178=<x=<0.290) has been measured. For the superconducting samples (0.178=<x=<0.238), the derived gap values (without any adjusting parameters) approach closely onto the theoretical prediction \Delta_{0}=2.14k_{B}T_{c} for the weak-coupling d-wave BCS superconductivity. In addition, the residual term \gamma(0) of SH at H=0 increases with x dramatically when beyond x~0.22, and finally evolves into the value of a complete normal metallic state at higher doping levels, indicating growing amount of unpaired electrons. We argue that this large \gamma(0) cannot be simply attributed to the pair breaking induced by the impurity scattering, instead the phase separation is possible.Comment: 6 pages, 6 figures; Contents added; Accepted for publication in Phys. Rev.

    Separability of a Low-Momentum Effective Nucleon-Nucleon Potential

    Get PDF
    A realistic nucleon-nucleon potential is transformed into a low-momentum effective one (LMNN) using the Okubo theory. The separable potentials are converted from the LMNN with a universal separable expansion method and a simple Legendre expansion. Through the calculation of the triton binding energies, the separability for the convergence of these ranks is evaluated. It is found that there is a tendency for the lower momentum cutoff parameter Λ\Lambda of LMNN to gain good separability.Comment: 6 pages, 1 tabl
    • 

    corecore